Goto

Collaborating Authors

 West Bengal


Indoor Air Quality Dataset with Activities of Daily Living in Low to Middle-income Communities

Neural Information Processing Systems

In recent years, indoor air pollution has posed a significant threat to our society, claiming over 3.2 million lives annually. Developing nations, such as India, are most affected since lack of knowledge, inadequate regulation, and outdoor air pollution lead to severe daily exposure to pollutants. However, only a limited number of studies have attempted to understand how indoor air pollution affects developing countries like India. To address this gap, we present spatiotemporal measurements of air quality from 30 indoor sites over six months during summer and winter seasons. The sites are geographically located across four regions of type: rural, suburban, and urban, covering the typical low to middle-income population in India.


Evaluating Negative Sampling Approaches for Neural Topic Models

arXiv.org Artificial Intelligence

Negative sampling has emerged as an effective technique that enables deep learning models to learn better representations by introducing the paradigm of learn-to-compare. The goal of this approach is to add robustness to deep learning models to learn better representation by comparing the positive samples against the negative ones. Despite its numerous demonstrations in various areas of computer vision and natural language processing, a comprehensive study of the effect of negative sampling in an unsupervised domain like topic modeling has not been well explored. In this paper, we present a comprehensive analysis of the impact of different negative sampling strategies on neural topic models. We compare the performance of several popular neural topic models by incorporating a negative sampling technique in the decoder of variational autoencoder-based neural topic models. Experiments on four publicly available datasets demonstrate that integrating negative sampling into topic models results in significant enhancements across multiple aspects, including improved topic coherence, richer topic diversity, and more accurate document classification. Manual evaluations also indicate that the inclusion of negative sampling into neural topic models enhances the quality of the generated topics. These findings highlight the potential of negative sampling as a valuable tool for advancing the effectiveness of neural topic models.


Developing cholera outbreak forecasting through qualitative dynamics: Insights into Malawi case study

arXiv.org Machine Learning

Cholera, an acute diarrheal disease, is a serious concern in developing and underdeveloped areas. A qualitative understanding of cholera epidemics aims to foresee transmission patterns based on reported data and mechanistic models. The mechanistic model is a crucial tool for capturing the dynamics of disease transmission and population spread. However, using real-time cholera cases is essential for forecasting the transmission trend. This prospective study seeks to furnish insights into transmission trends through qualitative dynamics followed by machine learning-based forecasting. The Monte Carlo Markov Chain approach is employed to calibrate the proposed mechanistic model. We identify critical parameters that illustrate the disease's dynamics using partial rank correlation coefficient-based sensitivity analysis. The basic reproduction number as a crucial threshold measures asymptotic dynamics. Furthermore, forward bifurcation directs the stability of the infection state, and Hopf bifurcation suggests that trends in transmission may become unpredictable as societal disinfection rates rise. Further, we develop epidemic-informed machine learning models by incorporating mechanistic cholera dynamics into autoregressive integrated moving averages and autoregressive neural networks. We forecast short-term future cholera cases in Malawi by implementing the proposed epidemic-informed machine learning models to support this. We assert that integrating temporal dynamics into the machine learning models can enhance the capabilities of cholera forecasting models. The execution of this mechanism can significantly influence future trends in cholera transmission. This evolving approach can also be beneficial for policymakers to interpret and respond to potential disease systems. Moreover, our methodology is replicable and adaptable, encouraging future research on disease dynamics.


MARRO: Multi-headed Attention for Rhetorical Role Labeling in Legal Documents

arXiv.org Artificial Intelligence

Identification of rhetorical roles like facts, arguments, and final judgments is central to understanding a legal case document and can lend power to other downstream tasks like legal case summarization and judgment prediction. However, there are several challenges to this task. Legal documents are often unstructured and contain a specialized vocabulary, making it hard for conventional transformer models to understand them. Additionally, these documents run into several pages, which makes it difficult for neural models to capture the entire context at once. Lastly, there is a dearth of annotated legal documents to train deep learning models. Previous state-of-the-art approaches for this task have focused on using neural models like BiLSTM-CRF or have explored different embedding techniques to achieve decent results. While such techniques have shown that better embedding can result in improved model performance, not many models have focused on utilizing attention for learning better embeddings in sentences of a document. Additionally, it has been recently shown that advanced techniques like multi-task learning can help the models learn better representations, thereby improving performance. In this paper, we combine these two aspects by proposing a novel family of multi-task learning-based models for rhetorical role labeling, named MARRO, that uses transformer-inspired multi-headed attention. Using label shift as an auxiliary task, we show that models from the MARRO family achieve state-of-the-art results on two labeled datasets for rhetorical role labeling, from the Indian and UK Supreme Courts.


Leveraging LLMs for Mental Health: Detection and Recommendations from Social Discussions

arXiv.org Artificial Intelligence

Textual data from social platforms captures various aspects of mental health through discussions around and across issues, while users reach out for help and others sympathize and offer support. We propose a comprehensive framework that leverages Natural Language Processing (NLP) and Generative AI techniques to identify and assess mental health disorders, detect their severity, and create recommendations for behavior change and therapeutic interventions based on users' posts on Reddit. To classify the disorders, we use rule-based labeling methods as well as advanced pre-trained NLP models to extract nuanced semantic features from the data. We fine-tune domain-adapted and generic pre-trained NLP models based on predictions from specialized Large Language Models (LLMs) to improve classification accuracy. Our hybrid approach combines the generalization capabilities of pre-trained models with the domain-specific insights captured by LLMs, providing an improved understanding of mental health discourse. Our findings highlight the strengths and limitations of each model, offering valuable insights into their practical applicability. This research potentially facilitates early detection and personalized care to aid practitioners and aims to facilitate timely interventions and improve overall well-being, thereby contributing to the broader field of mental health surveillance and digital health analytics.


d-Sketch: Improving Visual Fidelity of Sketch-to-Image Translation with Pretrained Latent Diffusion Models without Retraining

arXiv.org Artificial Intelligence

Structural guidance in an image-to-image translation allows intricate control over the shapes of synthesized images. Generating high-quality realistic images from user-specified rough hand-drawn sketches is one such task that aims to impose a structural constraint on the conditional generation process. While the premise is intriguing for numerous use cases of content creation and academic research, the problem becomes fundamentally challenging due to substantial ambiguities in freehand sketches. Furthermore, balancing the trade-off between shape consistency and realistic generation contributes to additional complexity in the process. Existing approaches based on Generative Adversarial Networks (GANs) generally utilize conditional GANs or GAN inversions, often requiring application-specific data and optimization objectives. The recent introduction of Denoising Diffusion Probabilistic Models (DDPMs) achieves a generational leap for low-level visual attributes in general image synthesis. However, directly retraining a large-scale diffusion model on a domain-specific subtask is often extremely difficult due to demanding computation costs and insufficient data. In this paper, we introduce a technique for sketch-to-image translation by exploiting the feature generalization capabilities of a large-scale diffusion model without retraining. In particular, we use a learnable lightweight mapping network to achieve latent feature translation from source to target domain. Experimental results demonstrate that the proposed method outperforms the existing techniques in qualitative and quantitative benchmarks, allowing high-resolution realistic image synthesis from rough hand-drawn sketches.


Towards Sustainable NLP: Insights from Benchmarking Inference Energy in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly recognized for their exceptional generative capabilities and versatility across various tasks. However, the high inference costs associated with these models have not received adequate attention, particularly when compared to the focus on training costs in existing research. In response to this gap, our study conducts a comprehensive benchmarking of LLM inference energy across a wide range of NLP tasks, where we analyze the impact of different models, tasks, prompts, and system-related factors on inference energy. Specifically, our experiments reveal several interesting insights, including strong correlation of inference energy with output token length and response time. Also, we find that quantization and optimal batch sizes, along with targeted prompt phrases, can significantly reduce energy usage. This study is the first to thoroughly benchmark LLM inference across such a diverse range of aspects, providing insights and offering several recommendations for improving energy efficiency in model deployment.


Through the Prism of Culture: Evaluating LLMs' Understanding of Indian Subcultures and Traditions

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown remarkable advancements but also raise concerns about cultural bias, often reflecting dominant narratives at the expense of under-represented subcultures. In this study, we evaluate the capacity of LLMs to recognize and accurately respond to the Little Traditions within Indian society, encompassing localized cultural practices and subcultures such as caste, kinship, marriage, and religion. Through a series of case studies, we assess whether LLMs can balance the interplay between dominant Great Traditions and localized Little Traditions. We explore various prompting strategies and further investigate whether using prompts in regional languages enhances the models cultural sensitivity and response quality. Our findings reveal that while LLMs demonstrate an ability to articulate cultural nuances, they often struggle to apply this understanding in practical, context-specific scenarios. To the best of our knowledge, this is the first study to analyze LLMs engagement with Indian subcultures, offering critical insights into the challenges of embedding cultural diversity in AI systems.


Leveraging In-Context Learning and Retrieval-Augmented Generation for Automatic Question Generation in Educational Domains

arXiv.org Artificial Intelligence

Question generation in education is a time-consuming and cognitively demanding task, as it requires creating questions that are both contextually relevant and pedagogically sound. Current automated question generation methods often generate questions that are out of context. In this work, we explore advanced techniques for automated question generation in educational contexts, focusing on In-Context Learning (ICL), Retrieval-Augmented Generation (RAG), and a novel Hybrid Model that merges both methods. We implement GPT-4 for ICL using few-shot examples and BART with a retrieval module for RAG. The Hybrid Model combines RAG and ICL to address these issues and improve question quality. Evaluation is conducted using automated metrics, followed by human evaluation metrics. Our results show that both the ICL approach and the Hybrid Model consistently outperform other methods, including baseline models, by generating more contextually accurate and relevant questions.


Dynamics of Toxicity in Political Podcasts

arXiv.org Artificial Intelligence

Toxicity in digital media poses significant challenges, yet little attention has been given to its dynamics within the rapidly growing medium of podcasts. This paper addresses this gap by analyzing political podcast data to study the emergence and propagation of toxicity, focusing on conversation chains-structured reply patterns within podcast transcripts. Leveraging state-of-the-art transcription models and advanced conversational analysis techniques, we systematically examine toxic discourse in over 30 popular political podcasts in the United States. Our key contributions include: (1) creating a comprehensive dataset of transcribed and diarized political podcasts, identifying thousands of toxic instances using Google's Perspective API, (2) uncovering concerning trends where a majority of episodes contain at least one toxic instance, (3) introducing toxic conversation chains and analyzing their structural and linguistic properties, revealing characteristics such as longer durations, repetitive patterns, figurative language, and emotional cues tied to anger and annoyance, (4) identifying demand-related words like 'want', 'like', and 'know' as precursors to toxicity, and (5) developing predictive models to anticipate toxicity shifts based on annotated change points. Our findings provide critical insights into podcast toxicity and establish a foundation for future research on real-time monitoring and intervention mechanisms to foster healthier discourse in this influential medium.